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cross-correlation is not normally a major problem in most long horizon event
study tests. If it is a problem, we derive cross-correlation adjusted versions of
the proposed tests. Based on simulations with actual return data, comparative
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1 Introduction

Long-horizon event studies of abnormal stock returns deal typically with event

windows of several months to years. Unlike short-run event studies using daily

stock returns, sample sizes are usually in the hundreds rather than tens of stock

return series. Also, in contrast to short-run event studies, there is no separate esti-

mation period in long-run event studies. As noted by Fama [12], Lyon, Barber, and

Tsai [26] (henceforth LBT), Kothari and Warner [22], and others, cross-correlation

bias and bad model problems tend to plague tests of long-run abnormal returns.

The latter problem of an appropriate expected return model is an unresolved as-

set pricing issue. The Fama-French [13] three-factor model is a frequently used

approach in short-run studies. Due to the lack of a reliable mean model in long

run event studies, many researchers (e.g, Mitchell and Stafford [28], Eberhart and

Siddique [11], Boehme and Sorescu [2], Gombers and Lerner [15], Byun and Roz-

eff [8], and others) employ a non-model approach popularized by Lyon, Barber,

and Tsai (LBT) [26] that utilizes carefully chosen reference portfolios or reference

stocks.

Extending the non-model LBT approach, we propose two major innovations that

materially improve the size and power properties of statistical tests in long horizon

event studies. First, we construct reference portfolios from stocks that form the

population from which the event study stocks are sampled. This innovation is con-

sistent with LBT’s approach but implies that reference portfolio stocks need not

be as closely matched to event study stocks as previously believed, which simplifies

the testing process. Second, we use Sharpe ratios to make returns more compa-

rable with respect to each other based on their risk-reward qualities. Departing

from extant tests, we define abnormal returns in terms of differences between
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event study stocks’ Sharpe ratios and the market average of the Sharpe ratio in

the sample period. Essentially Sharpe ratios are standardized returns (returns

scaled by their standard deviations), the use of which in long-horizon event stud-

ies is suggested by Fama [12]. He notes that the attraction of using standardized

returns stems from the fact that in the derived test statistics the abnormal returns

become weighted by their statistical precision ". . .which seems like the right way

to capture the increased information due to the event bunching." [12, p 296]. In

this respect, we should note that we do not use standardized abnormal returns

per se but differences in the Sharpe ratios of test assets’ standardized abnormal

returns with respect to market mean Sharpe ratios. Interestingly, this approach

can be interpreted in an economic sense to be more consonant with the model

approach to event studies that benchmarks abnormal returns relative to common

market return and risk.

One by-product of our non-model approach is that it solves in certain cases po-

tential cross-correlation problems that are perceived to plague long-horizon event

study results (see, Kothari and Warner [22, Ch. 4], Brav [4, Sec. D], Fama [12, Sec.

4.2.2]). Indeed, our results show that, using appropriate reference portfolios in the

abnormal return definition, the cross-correlation problem is virtually eliminated

in many cases.

We want to stress that, as discussed in Kothari and Warner [22, Ch. 4], the choice

of the mean model is extremely important in long-run horizon event studies. It not

only affects the accuracy of expected return estimates but the amount of remaining

cross-correlation in abnormal returns also. As shown by Kolari and Pynnonen [19]

for short-horizon event studies with clustered event days, it is crucial to choose

a mean model that extracts (as much as possible) common cross-correlation in

2



order to improve the power of the tests. In long-horizon event studies, properly

defined reference portfolios (or reference stocks) turns out to be a viable method

in this respect.

For long-horizon event study methods, a remedy for potential cross-correlation

problems is suggested by Jegadeesh and Karceski [18]. However, a shortfall of

this approach is that the small sample critical values deviate substantially from

the the theoretical thresholds, which causes severe size distortion in the tests.2

In those relatively extreme cases where the cross-correlation is a problem, the

present paper shows that the short-run approach in Kolari and Pynnonen [19] can

be adapted to long-horizon event studies to efficiently capture cross-correlation

bias even in these cases, such that the size of the proposed test is reasonably close

to the intended size and its power outperforms other popular tests.

Other biasing effects in long-horizon even study analyses, discussed among others

in Barber and Lyon [1] and Kothari and Warner [21], are new listing or survivor

bias and rebalancing bias (see also, Ritter [30]). Survivor bias is inherent in long-

run event studies due to the introduction of new companies or delistings in the

reference index during the event period. Sampling procedures can be used to

control for this bias. Also, as proven by Lyon, Barber, and Tsai [26], rebalancing

bias in monthly reference index returns can be avoided by using buy-and-hold

abnormal returns (BHARs). Furthermore, unlike short-horizon event studies, in-

ferences of long-horizon event studies may lead to different end results depending

on the return metrics employed. This important issue is discussed further in the

next section.

2We should note that this size distortion can be mitigated to tolerable levels in the case
of conventional t-tests with reference stock benchmarks (see, Jegadeesh and Karceski [18, Sec.
3.2]). However, as is shown in this paper, the reference stock approach leads to considerable loss
of power in the test statistics.
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2 Robust test statistics

In addition to the BHAR measure defined above, average monthly abnormal re-

turns (AARs or CARs) are the other popular return metric applied in long-horizon

studies. However, as stated by Fama [12, p. 293], these two metrics can lead to

different inferences about event effects.

Due to improved power properties, parametric tests by Patell [29] and Boehmer,

Musumeci, and Poulsen (BMP) [3] based on standardized abnormal returns have

gained popularity in short-horizon event studies. Their advantage stems from the

fact that, by scaling the original returns with the standard deviation, abnormal

returns become weighted by their statistical precision. Empirical studies (e.g.,

Patell [29] and Kolari and Pynnonen [19], and others) document that short-run

tests using standardized returns have superior power compared to those based

on unstandardized returns (e,g, Patell [29] and Kolari and Pynnonen [19], and

others).

3 Return metrics

3.1 BHAR

In long-run event studies, as developed by Ikenberry, Lakonishok, and Vermalen

[16], Barber and Lyon [1], and Lyon, Barber, and Tsai (LBT) [26], a characteristic-

based portfolio matching approach is widely used to estimate buy-and-hold ab-

normal returns (BHAR). Before the formal definition of BHAR, let us order the
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sample companies according to their secular event times and denote t = 1 the

event time of the company with earliest calendar time event in the sample. Next,

let ki denote the number of months associated with the event of company i from

the first event in the sample. Thus, k1 = 0 and ki ≥ 0 for i = 2, . . . n. For exam-

ple, if the first event in the sample is in March 1980 and for the ith firm in June

1985, then ki = 64 such that for an h = 60 months event period these companies

do not have any overlapping event months.

Given these notations, the h-month BHAR for stock i is defined as

BHARi(h) =
h∏
t=1

(1 +Ri,ki+t)−
h∏
t=1

(1 +Rb,ki+t), (1)

where Ri,ki+t is the month ki + t simple return of the ith stock, and Rb,ki+t is the

corresponding return for the benchmark portfolio, t = 1, . . . , h, i = 1, . . . , n.

Using (1) the (average) buy-and-hold abnormal return for a sample of n firms is

defined as

BHAR(h) =
1

n

n∑
i=1

BHARi(h) (2)

with BHARi(h) defined in (1).

It is notable that we can write BHAR(h) in (2) equivalently as

BHAR(h) = Rn(h)−Rbn(h), (3)

where

1 +Rn(h) =
1

n

n∑
i=1

(1 +Ri(h)) (4)
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and

1 +Rbn(h) =
1

n

n∑
i=1

(1 +Rb,i(h)) (5)

are the equally weighted h-period (cross) simple returns of the sample and the

reference portfolios, respectively, with

1 +Ri(h) =
h∏
i=1

(1 +Ri,ki+t) (6)

and

1 +Rb,i(h) =
h∏
t=1

(1 +Rb,ki+t). (7)

Under the null hypothesis of no event effect, the expected value of BHARi(h) is

zero. This hypothesis is tested in the literature by a conventional t-statistic (see

Lyon, Barber, ant Tsai [26, p. 173])

tbhar =
BHAR(h)

√
n

sbhar
, (8)

or its skweness adjusted version

tbharsa = tbhar +
γ̂

3
√
n

(
t2bhar +

1

2

)
(9)

where BHAR(h) is the sample mean of BHARi(h)s, sbhar is the (cross-sectional) sample

standard deviation of BHARi(h) over the sample of n firms, and γ̂ is an estimate

of the skewness coefficient of BHARi(h) (see Lyon, Barber, and Tsai [26, p. 174]

for details). We call these statistic in the following as BHAR-T and BHAR-TSA,

respectively.

By definition BHAR is bounded below but not above, which implies right skewness
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in the distribution of these returns (see Barber and Lyon [1] and Lyon, Barber,

and Tsai [26], and Kothari and Warner [22, Sec. 4.4.1]). In addition, as observed

by Mitchell and Stafford [28, p. 296] and Fama [12, p. 294, property (iii)], BHAR is

not a reliable measure long-run abnormal returns due to the compounding effect.

That is, if in, say, a 5-year study the first year is abnormal and the subsequent

years are normal, BHAR indicates abnormal behavior for all the years after the

first one. As a consequence, correct inference about the duration of the adjustment

requires short-term analysis. In this example one should be able to test separately

the last four years’ effect. Whereas this is not a major problem with the BHAR

methodology when applied to individual stocks, re-weighting may become an issue

in portfolios.

An additional potential problem for BHAR is that simple returns are closer to

the log-normal than the normal distribution. For a log-normal random variable,

the mean depends both on the location parameter and the variance. That is,

the expected value is E[Rt(h)] = e(µ+σ
2/2)h − 1, where µ = E[log(1 + Rt)] and

σ2 = var[log(1 + Rt)] are the expected value and variance of the single period

log-returns. Thus, for example, suppose that the mean annual return of a stock

is 12% and (annual) volatility is 20%. Then the five year expected return is

E[Rt(5)] = e(0.12+0.5×0.202)×5 − 1 ≈ 1, or 100%. Assume next that the event

changes the risk structure of the firm by increasing its volatility to 0.30. If the

risk increase is purely firm specific (as it plausibly would be in firm specific events

like seasoned equity offerings or share repurchases), such that it can be diversified

away, it would not affect the µ-parameter. However, the volatility increase affects

the expected return by raising it to 1.28, or 128%, which would indicate a 28%

abnormal return for BHAR. Thus, this methodology would mislead to infer a

continuing adjustment in returns due to increased volatility, which is a part of the
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expected value of a log-normal random variable. It is notable that the median

return due to the volatility change remains intact at eµ−1 (p.a). Although this is

a stylized example, it clearly demonstrates that there is potentially also a serious

identification problem in the BHAR methodology, which in particular is likely to

bias long-horizon inferences.

In addition to the aforementioned issues, Mitchell and Stafford [28, Sec. III] point

out serious statistical problems with BHARs that plague reliable statistical infer-

ences. Strong positive skewness and the fact that BHARs generally do not have

a zero mean have prompted attempts to overcome these issues by bootstrapping

(Brock, Lakonishok, and LeBaron [6], Ikenberry, Lakonishok, and Vermalen [16],

Lyon, Barber, and Tsai [26], Jegadeesh and Karceski [18]). However, Mitchell and

Stafford [28, Sec. IV.B] and Kothari and Warner [22, Sec. 4] observe that in most

cases there is also a cross-correlation problem that boostrapping does not address.

As demonstrated in Michell and Stafford [28] as well as short-run event studies

with clustered event days by Kolari and Pynnonen [19], even a seemingly trivial

(average) cross-correlation substantially changes the t-statistics, their asymptotic

distribution, and power of the tests (see Kolari and Pynnonen [19]). Fama [12,

p. 295] suggests as a remedy to use the rolling portfolio method of Jaffe [17] and

Mandelker [27] with monthly returns.

Overall, the BHAR methodology has many serious issues that can plague infer-

ences in long-run event studies. Barber and Lyon [1] and Lyon, Barber and Tsai

[26] motivate the use of BHAR because it ”precisely measures investor experi-

ence.” While investor return experience is definitely of interest, it remains an open

question whether the BHAR methodology adequately captures economic signifi-

cance. For example, a key component of investor experience is risk, which BHAR

8



methodology takes into account by means of cross-sectional variance (assuming

cross-sectional independence of long-horizon returns). But under this approach,

as the number of cross-sectional returns increases, the variance or risk of the

equal-(or value-) weighted portfolio converges to zero by the law of large num-

bers. The approach ignores the cross-correlation, which factually is ubiquitous to

virtually all long-horizon event studies. Thus, because returns are more or less

cross-correlated, a non-zero limiting variance is implied that equals the market

variance for value-weighted portfolios. In view of these serious issues, Mitchell

and Stafford [28, p. 307] conclude that ". . . BHAR methodology, in its traditional

form, should not be used for statistical inferences."

3.2 Calendar time returns

Unlike BHARs that focus on holding period returns and base inferences solely

on cross-sectional analysis, the calendar time approach tracks event effects of the

sample portfolio over the event period months. Fama [12, Sec. 4.2.1] states that

if the market efficiency is tested: ". . . the model of equilibrium jointly tested

with market efficiency specifies the unit of time for returns." Referring to Jaffe

[17] and Mandleker [27], Fama [12] and Mitchell and Stafford [28] define event

portfolios to investigate (for example) three years (T = 36 months) event effects

such that month t return of the portfolio, or Rp,t, is the equal-weighted (EW)

(or alternatively value-weighted (VW)) sum of returns of those stocks that had

the event in previous T periods. The portfolio is rebalanced monthly to drop all

companies that reach the end of T months period and to add all companies that

have just executed the event. The portfolio excess returns are regressed on the
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Fama and French [13] factors

Rp,t −Rf,t = ap + bp(Rm,t −Rf,t) + spSMBt + hpHMLt + ep,t, (10)

where Rp,t is the month t simple return of the portfolio for nt event, Rf,t is the

three-month T-bill rate, Rm,t is the CRSP value-weighted market return, SMB is

the small minus big stocks zero investment portfolio, and HML is the high BE/ME

minus low BE/ME portfolio (see Fama and French [13]). If model (10) correctly

captures the equilibrium price of the portfolio, the intercept ap measures the

average monthly abnormal return on the portfolio of event firms. Under the null

hypothesis of no event effect, ap = 0. Because ap indicates the Jensen’s alpha,

this method is also called the Jensen-alpha approach (for example) by Kothari

and Warner [22].

The advantage of the portfolio method is that it accounts for the possible cross-

correlation of returns. However, varying the number of returns in each month

imposes some heteroscedasticity in the residuals. Mitchell and Stafford [28] have

alleviated this effect by including only those months that have at least 10 event

series. The major problem, however, is the bad model problem as discussed in

Fama [12], which remains unresolved. In terms of the Fama-French three-factor

model in (10), this shows up in the fact that ap tends to be non-zero in non-event

portfolios also. As noted by Mitchell and Stafford [28, p. 315], because the com-

position of the portfolio changes monthly, the constancy of the slope coefficients is

unlikely. An additional biasing effect is the equal weighting of calendar months, so

that months with heavy event activity are treated the same as low activity months

(Mitchell and Stafford [28, p. 316] and Loughran and Ritter [24, pp. 362–363]).

For an extensive discussion of additional problems of using existing factor mod-

els like the Fama-French model or reference portfolios, see Loughran and Ritter
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[24]. In spite of these obvious shortcomings compared to the BHAR methodology,

Mitchell and Stafford [28, p. 326] conclude, ". . . we strongly advocate a method-

ology that accounts for the dependence of event-firm abnormal returns, such as

the calendar time portfolio approach."

3.3 Cumulative Abnormal Returns

Cumulative abnormal returns are defined as sums of daily abnormal returns over

the period of interest. Let Rit denote the month t (simple) return of company

i, E [Rit] the expected return, and ARit = Rit − E [Rit] the abnormal return of

company i in month t, such that the cumulative abnormal return (CAR) over h

periods is defined as

CARi(h) =
h∑
t=1

ARi,t. (11)

An obvious advantage of CARs over BHARs and calendar time returns is that

it is easy to investigate sub-periods as well as the total event period. In spite of

this obvious advantage, the BHAR and calendar time approaches are much more

popular than the CAR approach. From economic interpretation standpoint, a

disadvantage of CARs is that, when based on simple returns, they do not accu-

rately measure the h period return. This is because the h months return is the

product of monthly returns, not the sum, as in BHAR. Barber and Lyon [1, Sec.

2.1] demonstrate empirically the difference utilizing CRSP data. In terms of one

year holding period they show that typically the difference CAR− BHAR is positive

except for high BHARs where the difference becomes increasingly negative.

However, it should be borne in mind that from a statistical testing point of view,

in testing the null hypothesis of no event effect, the interest is solely in two things:
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the size and power of the test. That is, the behavior of the test method under the

null hypothesis and the power of rejecting the null when the alternative is true. As

a consequence, the question whether CARs and BHARs measure different things

under the alternative hypothesis is irrelevant. This is because in statistical testing

the question is to find a method that has correct null behavior and detects the

deviation from the null most efficiently.

Thus, if CAR and BHAR measure the same thing under the null hypothesis, they

are equally good initial candidates. The one which results to a more sensitive

test statistic with correct null behavior is preferred. As a consequence, selection

between BHAR and CAR based on the empirical properties in Barber and Lyon

[1, Sec. 2.1] is misleading from a statistical theory point of view: "Though partic-

ular sample means of CAR and BHAR are unbiased with respect to zero, CARs

are biased estimates of BHARs . . ." (Barbet and Lyon [1, p. 346] The unbiased-

ness under the null of no event effect makes them equally good in the beginning.

Economic significance can only be evaluated when the event signal has been de-

tected as statistically significant. Perhaps this can be best illustrated in terms of

non-parametric statistics. For example, replacing returns by the rank numbers in

short-run event studies has led to powerful test procedures (see e.g. Kolari and

Pynnonen [20]). Rank numbers per se do not convey much economic content, but

economic importance can be judged on the basis of the returns themselves after

statistical significance has been established.
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3.4 Continuously compounded returns

Because simple returns are bounded below but not above, a major statistical

problem with the simple return is that its distribution becomes by definition

skewed. Even though the central limit theorem guarantees normal approximation,

the convergence to the limiting distribution slows down materially for skewed

distributions and makes normal approximation inaccurate even for moderately

large sample sizes such as 200 (Sutton [31], Lyon, Barber and Tsai [26]).

In order to alleviate the skewness symptom, we use log returns, or ri(h) =

log (1 +Ri(h)). It is, however, important to notice the difference between simple

and log returns when dealing with portfolios. As is well known (e.g., Camp-

bell, Lo, and MacKinlay [9, p. 11] and exemplified by Barber and Lyon [1, Sec.

2.3], log returns do not aggregate cross-sectionally to portfolio returns. This

is not surprising because logarithm is a non-linear function, such that generally

log(x+y) 6= log(x)+log(y). As a consequence, if x and y are (cross) simple returns

of stocks log(x+ y) and log(x) + log(y) measure completely different things. The

former measures the continuously compounded return of an equal-weighted port-

folio, whereas the latter, if divided by two, measures the average of continuously

compounded returns of individual assets. Thus, in order to measure consistently

the same characteristics of returns, it is critical to apply logarithms of the same or-

der to the sample stocks and reference portfolios. Basically there are two options,

of which one will be discussed next in detail and used in subsequent empirical

simulations with actual return data.
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3.4.1 Continuously compounded abnormal returns (CCAR)

An option in applying continuously compounded returns in a consistent manner

to test event mean effects is to test mean differences of average log returns of the

test assets and the average log-returns of stocks in the reference portfolio.

More precisely, to preserve consistency with sample and reference stocks, we define

an h-period continuously compounded abnormal return (CCAR)

CCARi(h) = ri(h)− E[ri(h)], (12)

where

ri(h) =
h∑
t=1

ri,ki+t (13)

with ri,ki+t = log(1 + Ri,ki+t) the single period log-return, and Ri,ki+t the single

period (month ki + t) simple return of stock i.

The sample average of log returns is

r̄n(h) =
1

n

n∑
i=1

log(1 +Ri(h)) (14)

with 1 +Ri(h) defined in equation (6).

The average of the h-period log returns in the reference portfolio of stock i with

event period starting in the relative times at month ki is

r̄Ni
(h) =

1

Ni

Ni∑
j=1

log(1 +Rj,i(h)), (15)

where 1 + Rj,i(h) =
∏h

t=1(1 + Rj,ki+t) is the h period cross simple return of the
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jth stock in the benchmark portfolio of the sample stock i, and Ni is the number

of stocks in the benchmark in the beginning of the event period of stock i.

Subsequently, the continuously compounded abnormal return of stock i is

CCARi(h) = ri(h)− rNi
(h) (16)

such that average CCAR becomes

CCAR(h) =
1

n

n∑
i=1

CCARi(h). (17)

It is notable that CCAR(h) is completely additive. That is

CCAR(h) =
1

n

n∑
i=1

h∑
t=1

CCARi,ki+t, (18)

where

CCARi,ki+t = ri,ki+t − r̄Ni,ki+t (19)

is the single period continuously compounded abnormal return with

r̄Ni,ki+t =
1

Ni

Ni∑
j=1

rj,ki+t, (20)

the average of month s log-returns of the reference portfolio of the sample stock

with event month t, t ≤ s ≤ t+ h− 1. The additivity allows us to define for any

sub-period 1 ≤ h1 ≤ h2 ≤ h

CCARi(h1, h2) =

h2∑
t=h1

CCARi,ki+t, (21)
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such that

CCAR(h1, h2) =
1

n

n∑
i=1

CCARi(h1, h2), (22)

which makes it straightforward to test the significance of the event effect in any

sub-period with the t-ratio (CCAR-T)

tccar =
CCAR(h1, h2)

√
n

sCCAR(h1,h2)
, (23)

where sCCAR(h1,h2) is the square root of the sample variance of CCARi(h1, h2)

s2ccar(h1, h2) =
1

n− 1

n∑
i=1

(
CCARi(h1, h2)− CCAR(h1, h2)

)2
. (24)

If CCARi(h1, h2) are cross-sectionally independent, the central limit theorem implies

that the limiting distribution of equation (23) is standard normal including the

heteroscedastic case of varying individual variances σ2
i (h1, h2) = var [CCARi(h1, h2)].

Again, if the event days are clustered, the cross-sectional variance in (24) under-

estimates the true variance implying over-rejection of the null hypothesis. We will

discuss estimation of the cross-correlation in Subsection 3.5.1 below.

3.4.2 Sharpe ratio methodology

The importance of risk adjustment is critical in evaluation of abnormal returns,

as even a small error in risk adjustment can accumulate to become economically

large in long-horizon calculations (see, Kothari and Warner [22, Sec. 4.2]). For

example, in the Jensen’s alpha methodology discussed in Section 3.3, in addition

to the bad model problem, errors and potential biases in estimating the factor

regression coefficient can impose material errors in the intercept (Jensen’s alpha

measure).
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Here we propose to employ the Sharpe ratio for the purpose of risk adjustment in

estimating abnormal returns. We compute the Sharpe ratio as

sri(h) =
ri(h)− rf,i(h)

si(h)
, (25)

where ri(h) is the h-period log-return of stock i defined in equation (13), rf,i(h)

is the stock i related h-period log-return of the riskless asset, and si(h) =
√
hsi

in which

si =

√√√√ 1

h− 1

h∑
t=1

(ri,ki+t − r̄i)2 (26)

is the event period standard deviation of the log-returns ri,ki+t with r̄i the event

period average of returns ri,ki+t.

We define abnormal returns, or abnormal Sharpe ratios (ASR), as

ASRi(h) = sri(h)− sri(h), (27)

where

sri(h) =
1

Ni

Ni∑
j=1

srj(h) (28)

is the average h-period Sharpe-ratio for reference portfolio stocks.

Again, because ri(h) =
∑h

t=1 ri,ki+t and rf,i(h) =
∑h

t=1 rf,ki+t, it is straightforward

to deal with sub-periods by defining in an obvious manner

ASRi(h1, h2) = sri(h1, h2)− sri(h1, h2). (29)

Thus, an event effect on the sub-period 1 ≤ h1 ≤ h2 ≤ h can be tested in terms
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of the Sharpe-ratios with the t-ratio (SHARPE-T)

tsharpe =
ASR(h1, h2)

√
n

sasr(h1, h2)
, (30)

where

ASR(h1, h2) =
1

n

n∑
i=1

ASRi(h1, h2) (31)

is the sample mean of ASRi(h1, h2)s, and sASR(h1, h2) is the square root of the

cross-sectional sample variance

s2asr(h1, h2) =
1

n− 1

n∑
i=1

(
ASRi(h1, h2)− ASR(h1, h2)

)2
(32)

of the abnormal Sharpe ratios ASRi(h1, h2). Under the independence of ASRi(h1, h2)s,

the asymptotic null-distribution of (30) is standard normal.

The Sharpe-ratio has several attractive economic and statistical features. The

major economic features are that the Sharpe ratio has an acknowledged economic

interpretation as a reward-to-risk ratio. Also, it accounts for the possible change of

the return-to-risk ratio of the company due to the event. For example, a seasoned

equity offering (SEO) is likely to change the debt-to-equity ratio and hence the

leverage of the company which should have an impact on its expected return. If

this return effect is not balanced by the changed risk of the company, it may be

incorrectly viewed as an abnormal return in an event study. In this regard, the

Sharpe ratio accounts for the changed return-to-risk ratio.

Statistically, Sharpe-ratios are essentially standardized returns. Thus, scaling

returns by their standard deviation stabilizes the variance of the cross-sectional

observations. More importantly, standardized returns have gained popularity in

short-run event studies due to their superior power in tests over those based on
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non-standardized returns (see, Patell [29], Boehmer, Musumeci, and Poulsen [3],

Kolari and Pynnonen [19, 20], among others). As previously discussed, this power

advantage arises from the fact that in the derived test statistics the abnormal

returns become weighted by their statistical precision. Our simulation results

below with actual return data confirm the power of scaling in detecting event

effects. Next we discuss the estimation of the variances of abnormal returns.

3.5 Estimation of the variance of abnormal returns

Unbiased estimation of the abnormal return standard deviation is critical to the

correct size of event effect testing. The size problem in particular in the BHAR

approach is a well documented problem (Barber and Lyon [1], Lyon, Barber, and

Tsai [26], Mitchell and Stafford [28], and Jegadeesh amd Karceski [18]). Probably

the most appropriate approach to control size in the BHAR-methodology seems

to be the use of a single reference stock. This, however, becomes costly due to

severe loss of power. Jegadeesh and Karceski [18] suggest an approach that is

robust to cross-correlation and hetersocedastisity, but unfortunately the cost is

considerable loss in power (see Jegadeesh and Karceski [18, p. 110]). As discussed

earlier, the major problem with the BHAR methodology is skewness as well as

the multiplicative nature of the return definitions which make their statistical

properties difficult to discern. Thus, it is not possible to correct the biases and at

the same time preserve power.

Log-returns have the great advantage of being sums of shorter term log-returns

which makes them much more tractable in a statistical sense. This makes them

also much more convenient for construction of suitable test methods to detect
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possible changes in the return generating process due to event effects. It is notable

that, if the event effect has been spotted, its economic significance need not be

based on log-returns. It can be based on simple returns and related measures. The

role of the statistical tests is to detect the presence of a potential signal. Given

the signal, the next step is to evaluate its practical relevance.

3.5.1 Variances of CCAR and abnormal Sharpe ratios

The cross-sectional variances defined by (24) and (32) of the continuously com-

pounded abnormal return CCAR and abnormal Sharpe ration ASR, respectively

are logically equivalent. As a consequence the solution of the potential cross-

correlation problem is similar in both cases and can be solved in similar tech-

niques.

In the most general case, where the returns are allowed to be of autocorrelated,

cross-autocorrelated, and cross-sectional correlated, the estimation of the vari-

ances become intractable because of the too complex dependencies. However,

by assuming some degree of market efficiency we can rule out some of the se-

rial dependency. Then the cross-sectional dependency related to the remaining

autocorrelation is affected by the amount the event periods are overlapping.

Using the portfolio variance formula an the results in Kolari and Pynnonen [19,

Sec. 5.3], the variance of CCAR(h1, h2) can be written as

var[CCAR(h1, h2)] =
1

n
ν̄
(

1 + (n− 1)
ν̄ij
ν̄

)
, (33)

where ν̄ is the average of the variances of CCARi(h1, h2)s and ν̄ij is the average of
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the covariances of CCARi(h1, h2) and CCARj(h1, h2), i, j = 1, . . . , n, i 6= j.

As pointed out e.g. in Kolari and Pynnonen [19], the expected value of the sample

variance s2ccar(h1, h2) defined in equation (24) is

E
[
s2ccar(h1, h2)

]
= ν̄

(
1− ν̄ij

ν̄

)
. (34)

Comparing this with (42) we observe that the variance estimator s2ccar(h1, h2)/n,

utilized in the t-ratio (23), is in the presence of cross-sectional correlation a biased

estimator of the population variance. If the ratio of the average covariances and

average variances, denoted as θ = ν̄ij/ν̄, were known

s̃2ccar(h1, h2) =
1 + (n− 1)θ

1− θ
s2ccar(h1, h2) (35)

would be an unbiased estimator of the variance CCAR(h1, h2). Because the θ-ratio

is unknown, it must be estimated from data. We will next discuss approaches to

estimate θ.

Estimation of the covariance-variance ratio θ

There are three main instances that affect θ estimation. One is where the event

periods are completely separate such that none of the sample stocks have over-

lapping event months. In such a case the θ parameter is zero because the cross-

correlations are zero. This case, however, is quite implausible at least for longer

event windows. The second case is the opposite, where the all event months are

completely clustered with all stocks sharing the same event month. The third

option is in between with partially overlapping event periods. We will deal with
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these two last cases in detail below.

(a) Completely overlapping event windows

In order to deal with the cross-correlation we assume first that all firms share

the same event month, such that in CCARi,ki+t defined in equation (19) we can set

ki = 0. With this convention in order to simplify notations that follow, we denote

uit = CCARi,t (36)

such that the the cumulative CCARi(h1, h2) in (21) becomes

CCARi(h1, h2) = γ′ui, (37)

where γ is a h-vector with ones in positions from h1 to h2 and zeros elsewhere, ui =

(ui1, . . . , uih)
′ is the h-vector of uit = CCARi,t, t = 1, . . . , h, and the prime denotes

the transposition. With these notations we make the following assumption:

Assumption 1 It is assumed that uit are conditionally unpredictable in mean by

other returns such that,

E [ui,t+k|u1,t, u2,t, . . . , un,t] = E [ui,t+k|ui,t] , (38)

for all i = 1, . . . , n, k = 1, 2, . . .

This assumption allows both autocorrelation and cross-autocorrelations, but rules

out lead-lag relationships and thus Granger-causality between the series. Ac-

cordingly, all observed cross-autocorrelations are due to contemporaneous cross-
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correlations and (own) serial correlations of the series.

In particular, if the normality of the returns holds, E [ui,t+k|ui,t] is a linear function

of the form E [ui,t+k|ui,t] = %i(k)ui,t (assuming E[uit] = 0), where %i(k) is the

autocorrelation of ui,t+k and ui,t, or the kth order autocorrelation of the series

uit. Then cov [ũi,t+k, uj,t] = 0, for all i 6= j, where ũi,t+k = ui,t+k − %ikui,t, which

implies

cov [ui,t+k, uj,t] = σij%i(k), (39)

in which σij = cov [ui,t, uj,t] is the cross-sectional covariance of ui,t and uj,t. Using

these, the covariance matrix of ui and uj becomes

cov [ui, uj] = σijΩij (40)

where

Ωij =



1 %j(1) %j(2) %j(3) · · · %j(h)

%i(1) 1 %j(1) %j(2) · · · %j(h− 1)

%i(2) %i(1) 1 %j(1) · · · %j(h− 2)

%i(3) %i(2) %i(1) 1 %j(h− 3)

...
...

...
. . .

...

%i(h) %i(h− 1) %i(h− 2) %i(h− 3) · · · 1


(41)

Noting that γ′Ωijγ = γ′Ωjiγ and Ωi + Ωj = Ωij + Ωji, where Ωi ≡ Ωii and

Ωj ≡ Ωjj are the symmetric autocorrelation matrices of ui and uj, respectively, the

variance of CCAR(h1, h2) can be presented (after some algebra) in these notations
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as

var
[
CCAR(h1, h2)

]
=

1

n2

(
n∑
i=1

var [γ′ui] +
∑
i 6=j

cov [γ′ui, γ
′uj]

)
(42)

=
1

n2

n∑
i=1

(σ2
i + (n− 1)σ̄i)γ

′Ωiγ,

where σ2
i is the one period (monthly) variance of asset i and σ̄i =

∑
j 6=i σij/(n−1)

is the average one period cross-section covariance of asset i with the other assets

j = 1, . . . , n, j 6= i. Assuming that the variances σ2
i and average cross-sectional

covariances σ̄i are ’uncorrelated’ with the quadratic forms of the autocorrelations

γ′Ωiγ, use of the covariance identity
∑

i(xi − x̄i)(yi − ȳ) =
∑

i xiyi − nx̄ȳ implies

under the zero covariance assumption that
∑

i xiyi = nx̄ȳ, or in terms of the

variance in (42)

var
[
CCAR(h1, h2)

]
=

1

n

(
σ̄2 + (n− 1)σ̄

)
γ′Ω̄γ. (43)

In equation (43), σ̄2 =
∑n

i=1 σ
2
i /n, σ̄ =

∑
i 6=j σij/[(n(n− 1)], and Ω̄ =

∑n
i=1 Ωi/n

are the averages of the variances, σ2
i , cross-sectional covariances, σij, and auto-

correlation matrices Ωij, respectively. The bottom line is that we can estimate

σ̄2 as the average of sample variances of the stocks calculated from the monthly

returns and the average covariance σ̄ can be efficiently computed from the equally

weighted sample portfolio variance equation

s2p =
1

h− 1

h∑
t=1

(art − art)
2 (44)

=
1

n2

(
n∑
i=1

s2i +
∑
i 6=j

cij

)

=
1

n
(s̄2 + (n− 1)c̄),
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where

s2i =
1

h− 1

h∑
t=1

(arit − ari)
2 (45)

is the monthly sample variance of the abnormal return series i,

cij =
1

h− 1

h∑
t=1

(arit − ari)(arjt − arj) (46)

is the monthly sample covariance of the abnormal return series i and j, and

s̄2 =
∑

i s
2
i /n and c̄ =

∑
i 6=j cij/[n(n − 1)] are respectively the averages of the

variances and covariances. Utilizing the last line of equation (44) the average

covariance can be efficiently computed as

c̄ =
ns2p − s̄2

n− 1
. (47)

Thus, an estimator for the θ ratio in (35) is

θ̂ =
c̄

s̄2
=

ns2p − s̄2

(n− 1)s̄2
=
ns2p/s̄

2 − 1

n− 1
. (48)

This is computationally an efficient way to estimate the covariance variance ratio,

because instead of computing n(n− 1)/2 covariances and n variances to the ratio

one needs only to compute n + 1 variances, i.e., variances of the n sample series

and the equally weighted portfolio variance. For example, if n = 400, one needs

only to compute 401 variances compared to 400 × 401/2 = 80, 200 variances

and covariances. This approach gives also a handy method of computing the

average correlation by replacing the original observations by the standardized

returns zit = (arit − ari)/si, defining the equally weighted index zt =
∑

i zit/n,

its sample variance s2z, such that the average correlation using equation (47) can

be computed simply as r̄ = (ns2z − 1)/(n − 1). Thus, again only n + 1 variances

are need to compute instead of n(n− 1)/2 covariances and n variances.
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Finally, it may be noted that in principle we could use the portfolio variance s2p de-

fined in equation (44) to estimate the variance of CCAR(h1, h2). However, typically

in long-run event studies the number of firms n is much larger than the number

of months h, which implies that estimating the variance from the cross-sectional

observations is much more efficient. In addition, the possible autocorrelation be-

comes implicitly estimated by the cross-sectional variance s2ccar(h1, h2) defined in

(24). Also, it must be noted that the estimator of the average covariance is based

essentially on only the h− 1 degrees of freedom, which implies that in short event

windows random noise would be material in individual covariance estimates, but

fortunately can be expected to be reduced in the average. However, the impor-

tance of the selection of a mean model that eliminates as much as possible of

the cross-correlation is crucial to improve the power of the tests (c.f. Kolari and

Pynnonen [19, p. 4016]).

(b) Partially overlapping event windows

If the returns are autocorrelated, unfortunately the solution of partially overlapped

event periods does not solve as easily as in the above completely overlapping case.

However, if we can assume that the serial correlations are zero or negligible the

cross-correlation problem can be solved in a straightforward manner. We make

first explicitly the zero autocorrelation assumption:

Assumption 2 The autocorrelations and cross-autocorrelations of the return se-

ries are zero.

In the notations above, suppose that returns in ui have an overlapping event

window with returns in uj starting from month k, 1 < k ≤ h. That is, there are
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h− k + 1 overlapping event months. Then the covariance matrix between ui and

uj is of the form

cov [ui, uj] = σij Ĩ(k) (49)

where Ĩ(k) is an h×h matrix with ones in positions i, k+ i−1, i = 1, . . . , h−k+1

and zeros elsewhere. I.e., Ĩ(k) is a matrix of the form

Ĩ(k) =



0 · · · 1 0 · · · 0

0 · · · 0 1 · · · 0

...
. . .

0 · · · 0 0 · · · 1

0 · · · 0 0 · · · 0

...
...

...
...

0 · · · 0 0 · · · 0



. (50)

Consider the cumulative abnormal returns over the whole event window such that

in (37) γ = (1, . . . , 1)′ is an h-vector of ones. Then the cross-covariance of the

cumulative abnormal returns CCARi(1, h) = γ′ui and CCARj(1, h) = γ′uj becomes

cov [γ′ui, γ
′uj] = σijγ

′Ĩ(k)γ = (h− k + 1)σij. (51)

The covariance (51) is invariant under the permutation of the elements in the

vectors ui and uj. Thus, for convenience we can arrange the vectors such that the

coordinates of the returns that have the same same calendar months are matched

and the rest of the returns with non-overlapping months fill the rest of the vectors.

For example, we arrange the overlapping calendar month returns to the end part

of the vectors and the non-overlapping returns to the beginning, the Ĩ(k) matrix

takes the format in which the last (h − k + 1) main diagonal elements are ones

and all other elements are zeros.
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Matching the returns in the above manner and computing the sample covariance

by cij defined in equation (46), the expected value of it is

E [cij] =
h− k − 1

h
σij. (52)

Thus, hcij is an unbiased estimator of the covariance (51) of the cumulative ab-

normal returns.

Using the above matching convention we can derive an estimator of the covariance-

variance ratio θ that is based on unbiased covariances and variances. Utilizing

the portfolio method as in equation (48) gives again a computationally efficient

approach. This can be accomplished as follows:

1. Arrange the firms in the order according to their event month in calendar

time such that, the return series of the first company has the earliest event

month, the second company has the second earliest event month, and so on.

2. Match the coordinate of the first overlapping event months of firm i with

firm i − 1, fill the remaining coordinates up to h in calendar order and

move the leftover returns in calendar order to the beginning of the vector,

i = 2, . . . , n. If there are no overlapping months in the return vectors of firm

i and firm i− 1, no reordering is needed.

3. Given the reordered series, compute the equally weighted portfolio of the

reordered series and compute its variance by formula (44). Compute the in-

dividual variances of each series using formula (45) and compute the average

of the variances.

4. With the portfolio variance and the average of the variances, compute an

estimator for the θ-ratio using equation (48).
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It is notable that this approach can be extended also to estimate the θ-ratio for the

variance in testing arbitrary sub-periods by constructing the portfolio such that

it accurately reflects the cross-correlation of the sub-period returns. However, we

do not elaborate the analysis to this direction further.

Let θ̂ccar denote the estimated θ-ratio by the above procedure using continuously

compounded abnormal returns (CCARs), then cross-correlation adjusted CCAR-T

(CCAR-TCA), where CCAR-T is defined by equation 23, for testing CCAR becomes

tccarca =
CCAR(1, h)

√
n

ŝccar(1, h)

√
1− θ̂

1 + (n− 1)θ̂
, (53)

where

sccar(1, h) =

√√√√ 1

n− 1

n∑
i=1

(
CCARi(1, h)− CCAR(1, h)

)2
(54)

is the cross-sectional variance of the h-period CCARs.

In the same manner, let θ̂asr denote the θ-ratio estimated by the above proce-

dure using abnormal Sharpe-ratios (ASR), a cross-correlation adjusted SHARPE-T

(SHARPE-TCA), where SHARPE-T is defined in equation (30), becomes

tsharpeca =
ASR(1, h)

√
n

ŝasr(1, h)

√
1− θ̂asr

1 + (n− 1)θ̂asr
, (55)

where

sasr(1, h) =

√√√√ 1

n− 1

n∑
i=1

(
ASRi(1, h)− ASR(1, h)

)2
(56)

is the cross-sectional variance of the h-period ASRs.
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4 Test statistics, data, and simulation designs

All the test statistics are variants of the t-ratio, i.e., mean abnormal return di-

vided by its standard error. Table 1 summarizes the used t-ratios and their key

characteristics.

[Table 1]

4.1 Reference portfolios

We construct three types of reference portfolios, or benchmarks: (a) Size/book-

to-market matched portfolios, (b) Market-wide portfolios, and (c) Size/book-to-

market matched reference stocks. Each of these are discussed in detail below.

(a) Size/book-to-market matched portfolios

The event study methodology recommended in Lyon, Barber, and Tsai [26] has

become popular in long horizon event studies (see Jegadeesh and Karceski [18] and

references therein). Here we follow their methodology in constructing 70 size and

book-to-market reference portfolios. Our sample is comprised of NYSE, AMEX,

and NASDAQ stocks in the sample period from July 1973 to December 2009.

ADRs, closed-end funds, and REITs are excluded. Monthly returns and market

capitalization are obtained from CRSP, and book value data are gathered from

Compustat (i.e, item 60).

In constructing the 70 size and book-to-market reference portfolios, first stocks
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are assigned to size deciles based on the market value of the equity at the end

of July each year using CRSP end-of-month prices and total shares outstanding.

The NYSE size decile break points are then used to assign firms into the size

categories. AMEX and NASDAQ firms are placed into appropriate NYSE size

categories according to their end-of-June market value. As in Lyon, Barber, and

Tsai [26], because many small firms listed in NASDAQ fall in the small firm

decile, the decile is further partitioned into quintiles using all NYSE, AMEX, and

NASDAQ firms in the decile. Thus, we have a total of 14 size categories. Each of

these 14 size categories are further subdivided into book-to-market ratio quintiles

based on the book-to-market (BM) value of the firm as of the end of the previous

calender year. The most recent book value of equity is used as of December in a

particular year, and the market value of equity at the end of December are used

to compute BM. Each of the 14 market size categories are evenly divided into

five portfolios based on the previous December’s BM. This yields a total of 70

size/BM reference portfolios.

(b) Market-wide portfolios

In order to highlight the need of the fairly complicated strategy of constructing

reference portfolios for proper risk adjustment of the abnormal returns, we report

for comparison purposes results where the risk adjustments are worked out in

terms of reference portfolios that are simply market averages of all stocks. More

precisely, the market-wide portfolios is formed using the stocks of the universe of

benchmark design (a) by constructing each in month the holding period (12, 36, or

60 months) buy-and-hold portfolio from all those stocks that have complete return

series over the whole holding period of interest (i.e., 12, 36, or 60 months) from

the starting month forwards. For the buy-and-hold abnormal returns (BHAR) these
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portfolios are equally weighted portfolios and for the continuously compounded

abnormal returns (CCAR) and abnormal Sharpe ratios (ASR) the portfolios are

simply cross-sectional monthly averages of the monthly log-returns (in CCARs)

and Sharpe-ratios (in ASRs).

(c) Size/book-to-market matched reference stock

A size and book-to-market matched reference stock is a stock of a firm that belongs

in the beginning month of the holding period to the same size and book-to-market

category (constructed in design (a)) as the sampled firm. From these, firms with

market value (in the beginning of the event period) between 70 percent and 130

percent of the sampled firm are identified and the one with book-to-market ratio

closest to the sampled firm is selected as the reference firm whose stock is the

reference stock.

4.2 Simulations designs

In our simulations, like Lyon, Barber, and Tsai [26], we utilize two different ran-

dom sample designs and various different non-random sample designs to choose

n = 200 firms. In the first random sample design, n = 200 firms are randomly

selected with replacement and 200 event months are randomly selected also with

replacement, however, such that if a firm becomes sampled multiple times it can-

not have twice the same event period. We refer to this design as RANDOM.

In the second random design we sample in each simulation round randomly one

event day and n = 200 firms without replacement. This design is referred to as

RANDOM CLUSTER to indicate completely clustered event months with high
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cross-correlation between the returns. In each design we repeat the procedure

1, 000 times to get the empirical distributions of the investigated test statistics.

The reference portfolios are constructed such that only stocks that have complete

return series in the holding period are included. Thus, stocks delisted during

the holding period h and those listed after the event day are excluded from the

reference portfolio. This procedure should make the characteristics of the firms in

the reference portfolio closely match those of the sampled firms during the holding

period. Each of the above sampling designs is simulated 1,000 times to produce

empirical distributions of the test statistics.

5 Simulation results

5.1 Random samples

In this section we report results of the RANDOM design for non-clustered and

clustered event days. In the clustered event case we deal with the special case

where in each simulation round the sampled 200 stocks all share the same event

month. On the basis of the empirical results we will see that in fact the complete

clustering is not an issue from which we can deduce that a lower level clustering,

where some of the event months are the same and others are more or less close

to each other, does not cause particular problems in long run event study testing.

Indeed, the empirical simulation results suggest that clustering in fact improves

the power of some test procedures.
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5.1.1 Non-clustered event months

This section reports results of the random designs (RANDOM) for 12, 36, and 60

months event period. Table 2 reports sample statistics of the tests of this design

when there is no event effect. It is notable that in particular BHAR-T with buy-

and-hold size/book-to-market portfolio adjusted returns is most negative. The

skewness adjustment (BHAR-TSA) improves the situation. Also if the reference

stock adjusted abnormal returns are used the average BHAR-T is quite close to zero.

The means of CCAR-T and SHARP-T for abnormal returns defined with respect to

the market-wide references are positive and relatively large in the shortest window

of 12 months. In the longer windows (36 and 60 months) they are close to zero.

The standard deviations of all test statistics are fairly close to the theoretical

value of unity. It is notable that in terms of the sample statistics there are no

material differences whether the abnormal returns are defined by using the size

and book-to-market matched portfolios or the market portfolio.

[Table 2]

Size

Table 3 reports empirical rejection rates at the nominal significance levels of 1%,

5%, and 10% on both tails separately as well as in the two-sided case under the

null hypothesis of no event effect. The respective cut-off values corresponding the

significance levels are from the normal distribution ±2.58, ±1.96, and ±1.65.

In particular BHAR-T suffers size distortion by over-rejecting if the abnormal re-

turns are defined with respect to the matched reference portfolio or market-wide
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portfolio. Even the skewness adjustment (BHAR-TSA) does not materially improve

the situation. The tendency is that these statistics over-reject negative abnormal

returns while positive abnormal returns tend to be under-rejected. These results

are consistent with earlier findings (e.g., Lyon, Barber, and Tsai [26, Table III]).

The skewness of the return distribution of BHAR is the reason for these results such

that a sample of size 200 observations is not yet large enough to warrant reliable

Central Limit Theorem based large sample approximation to the distribution of

these statistics. As Table 3 shows, reliable size results by BHAR-T are obtained

only if the abnormal returns are defined in terms of the reference stock. However,

as will be seen below, this leads to material power losses.

Also CCAR-T and SHARPE-T suffer some size distortion in the shortest window of

12 months in particular in the case of the market-wide benchmark. In the longer

windows of 36 and 60 months SHARPE-T is rejecting generally close to the nominal

rates when abnormal behavior is defined with respect to market-wide benchmark

or a reference stock. CCAR-T is rejecting close to the nominal in the 36 months

window for all benchmarks.

Generally even in the cases with statistically significant deviations from the nom-

inal rejection rate, size distortions of CCAR-T and SHARPE-T are numerically quite

small, in particular compared to those of BHAR-T and BHAR-TSA.

[Table 3]

Power

Tables 4 and 6 with with graphical depicts collected to Figure 1 report the powers

of the test statistics for the RANDOM design. There are three outstanding results.
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First, although BHAR-T and BHAR-TCA tend to over-reject the null hypothesis of

no event effect (the ±0 row in the panels), their powers on all event windows are

far inferior to CCAR-T and in particular SHARPE-T.

[Tables 4, 5, and 6]

Second, comparing powers of test based on abnormal returns defined with respect

to portfolio (market or matched) in Panels A, B, D, E, G, and H with tests based

on abnormal returns defined with respect to reference stock in Panels C, F, and

I in Figure 1, one sees the dramatic power loss due to the matched stock method

(Panels C, F, I) compared to those of the matched portfolio method (Panels A,

D, G) or the market-wide reference portfolio method (Panels B, E, H). It is also

notable that comparing the results of SHARPE-T in Table 6 with the BHAR-T and

BHAR-TSA in Table 4 or Table 5, we see that the power of SHARPE-T is even with

the matched reference stock method (Table 6) more powerful than the BHAR-T

and BHAR-TSA with abnormal returns defined with respect to reference portfolio

(matched or market-wide). For example, in the three years event window, Pan-

els B of matched portfolio method in Table 4 shows that a 12% abnormal return

is detected by BHAR-T with probability 0.300 and by BHAR-TSA with probability

0.473, while in terms of SHARPE-T with matched stock method it is detected with

probability 0.559 (Table 6, Panel B). With reference portfolio method based ab-

normal returns a 12% abnormal return is detected by SHARPE-T with probability

as high as 0.831 (Panel B of Table 4), which is more than two times better than

that of BHAR-T and almost two times better than that of BHAR-TSA, even though

these two statistics tend to over-reject the null-hypothesis.

[Figure 1]
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Third, as Tables 4 and 5, and Figure 1 (Panels A, B, D, E, G, H) show it does not

make a big difference in terms of size and power of the tests whether the abnormal

returns are defined with respect to the matched portfolios or with respect to the

market-wide portfolio. The latter is far easier to construct.

Thus, in all the results show the benefit of scaling the returns by the standard

deviation and empirically confirm the advantages of adjusting returns by their

statistical accuracy, which naturally also lead to economically well defined risk

adjusted returns (Sharpe ratios). Later we deal with empirical properties of the

Sharpe-ratio based approach in non-random samples. Before that we investi-

gate size and power properties the tests in the case of completely clustered event

months, i.e., when the event month is the same for all stocks in the sample.

5.1.2 Clustered event months

Size

Similar to Table 3, Table 7 reports the rejection rates of the test statistics in

different event windows and at the nominal significance levels of 1%, 5%, and 10%

when the event month is the same for all firms in a sample (RANDOM CLUSTER

design, see Section 4.2). Generally, all test statistics are approximately equally

well specified in the RANDOM CLUSTERED as in the RANDOM design.

At first glance this might seem surprising, because clustered event months imply

cross-sectionally correlated returns, which biases standard error estimates (see e.g.,

Kolari and Pynnonen [19]). Indeed, on average the returns are cross-sectionally

correlated in our samples, such that in our 1, 000 simulations of n = 200 stock
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samples the average monthly (log) return cross-correlations are 0.165, 0.183, and

0.186 for the 12, 36, and 60 months event windows. However, the average cross-

correlations of the abnormal returns turned out to be generally about zero. This

implies that cross-correlation becomes eliminated from the abnormal returns on

average and thus does not impose size distortion to the test statistics. This is

consistent with earlier findings (e.g., Lyon, Barber, and Tsai [26, p. 188]).

An explanation of the disappearance of the cross-correlation can sketched in terms

of a factor model. That is, in general terms, let ri denote the return of stock i,

i = 1, . . . , that obey a factor model

ri = β′if + ui, (57)

where βi is a vector of factor coefficients conforming the dimension of the common

factors in vector f and the prime denotes transposition. The common factors

capture the cross-correlation of the returns such that the uis are uncorrelated

with each other and with the common factors. Let rm = β′mf denote the return

of the equally weighted market portfolio (in which the idiosyncratic component

cancels out). Assume we have a sample n stocks in our event study. Then the

average abnormal return becomes

ar = r̄ − rm = (β̄n − βm)′f + ū, (58)

where r̄, β̄n, and ū are the arithmetic means of ri, βi, and ui. The variance of ar

becomes

var[ar] = (β̄n − βm)′Σf (β̄n − βm) + var[ū], (59)

where Σf is the covariance matrix of the common factors. Now, as the sample
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size increases β̄n → βm such that the covariance term (β̄n − βm)′Σf (β̄n − βm)

disappears and hence, the variance of the abnormal return becomes independent

of the cross-correlations. Typically in long horizon event studies the sample sizes

are relatively large (hundreds) such that the limiting behavior becomes a good

approximation for the reality.

Power

To conserve space, we report only graphical results regarding the power results.

Analogous to Section 5.1.1, we add different magnitudes of abnormal returns,

indicated by the x-axes in the Panels of Figure 2, randomly across the event

months. Again, SHARPE-T has superior power over the other methods. Also, it

is notable that the complete clustering of the event days does not weaken the

power of tests. In fact, it seems to even improve the symmetry of BHAR-T and

BHAR-TSA. We have demonstrated these results in terms of the 36 months event

window in Figure 3, in which the power results from the RANDOM and RANDOM

CLUSTER designs are depicted in the same graph for each test statistic. As the

figures shows the power functions are almost identical in each case.

[Figure 2]

[Figure 3]

5.2 Non-random samples

In this section we report statistical results of the investigated test statistics (Ta-

ble 1) under different types of sampling designs that typically are termed as
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non-random samples (Lyon, Barber, and Tsai [26], Mitchell and Stafford [28],

Jegadeesh and Karceski [18]). The investigated designs according to which the

samples are constructed are: (1) Overlapping event periods, (2) Firm size, (3)

Book-to-market, (4) Pre-event return performance, and (5) industry clusterings.

In each design we draw 1, 000 samples of 200 event samples to asses the perfor-

mance of selected test statistics.

5.2.1 Overlapping event periods

In particular for the longer end event periods of five years the likelihood of multi-

ple events increases. An example referred to by Lyon, Barber, Tsai [26, p. 190] is

Microsoft’s common stock split in April 1990, and June 1992. In this particular

case three and five years event windows would have respectively 11 and 35 over-

lapping months. Clearly these two series are not independent. In fact, for example

in the five-year window assuming zero autocorrelation, equation (51) implies that

the theoretical covariance of the five year log-returns of these series equals 35σ2
i ,

where σ2
i is the monthly variance. Unlike for clustered event days discussed in

Section 5.1.2, reference portfolio or reference stock does not eliminate the cross-

correlation. However, as our simulation results show, moderate number of stocks

with multiple event within the same event window do not materially bias CCAR-T

and SHARPE-T tests even if the cross-correlation is not accounted for.

[Table 8]

Table 8 reports results of samples in which 10%, 50%, and 100% of firms are

sampled twice with overlapping event event periods. The overlapping cases are

generated such that for the same firm two separate event months are randomly
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selected such that the difference between the months are at most h− 1, where h

is the length of the event period. Thus, in the 10% overlapping design we select

in each of the 200 event samples first randomly 10 firms and two random event

months (i.e., altogether 20 months) and then the rest 180 firms are sampled such

that they do not have overlapping event months. In the 50% case 50 firms have

two event months and finally in the 100% case 100, i.e., all firms in have two events

such that the event periods share at least one common month. Each design 1, 000

respective samples are drawn to asses the empirical behavior of the test statistics.

The results show two major results. First, although multiple events with overlap-

ping event periods generate cross-correlation, even a relatively high such as 10%

of cases share the overlapping symptom it does not materially affect the perfor-

mance of the test statistics. In particular CCAR-T and SHARPE-T reject close to the

nominal rates in each event period horizons whichever benchmark is used. BHAR-T

is well specified with reference stock while BAHR-TSA tend to over-reject on the

lower tail and in two-sided testing in three and five year horizons. Thus, the cross-

correlation is not a serious problem for a moderate number of double events within

the same event period for a firm. In fact, while the average cross-correlation of the

return series in our simulation samples was e.g., in the 60 months window 0.035,

the average cross-correlation of the abnormal Sharpe-ratio was only 0.00018.

The second major result is that when the share of stocks with two overlapping

events increases the cross-correlation starts to bias in particular the statistics that

do not account for it (BHAR-T, BHAR-TSA, CCAR-T, and SHARPE-T). In the 50% case

the rejection rates of these statistics are typically more than one and half times

the nominal rate and more than double when all firms have two overlapping event

periods (the 100% case). In addition use of the market as a reference increases
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miss-specification in almost all cases. While the average return cross-correlation

of 0.038 for example in the 60 months window is not much higher than in the

10% case, the average cross-correlation of the abnormal Sharpe ratio increases to

0.0024. This biases by equation (55) the standard deviation on average by a factor√
1 + (200− 1)0.0024 ≈ 1.22, or 22%. The biasing effect explains partially the

miss-specification. In the above 10% case the standard deviation of e.g., BHAR-T,

BHAR-TSA, CCAR-T, and SHARPE-T are respectively 1.11, 1.12, 1.01, and 1.01 for

the matched market portfolio in the 60 months event period. The corresponding

standard deviations in the 100% case are 1.25, 1.27, 1.21, and 1.18, while for cross-

correlation adjusted statistics CCAR-TCA and SHARPE-TCA they are 1.00 and 0.99,

i.e., virtually the same as the theoretical standard deviations. However, the means

are respectively 0.65 and 0.48 which deviate highly significantly from zero. Thus,

while the adjustment of the standard deviations account the cross-correlation bias,

return adjustment by the reference portfolios or even by the matched reference

stock do not reflect properly the average abnormal return if there is a very large

number of the multiple event stocks with overlapping event windows. However,

as the above results show, there is no discernible bias if the number of these cases

is moderate.

5.2.2 Firm size

For example Boehme and Sorescu [2] find long horizon price drift following divi-

dend initiations and resumptions only for small stocks. To investigate the impact

of firm size based sampling on the test statistics, we draw separately from each of

the smallest and largest size deciles 1, 000 samples of 200 events. The deciles are

constructed according to NYSE market sizes as described in Section 4.1.
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Table 9 report the simulation results. It turned out that in these sub-populations

the overall market portfolio failed to work because of the general tendency of small

firms having average returns higher than the market average and large firms having

on average lower returns than the market average, a phenomenon reported also in

Lyon, Barber, and Tsai [26, Table I]. Accordingly, we report only results using the

size/book-to-market matched portfolios and size/book-to-market matched stocks

as benchmarks.

Generally, with these benchmarks all test statistics are reasonably well specified

in the large firms (Panel A of Table 9). In small firm samples (Panel B) major

miss-specifications for all tests, except BHAR-T with size/book-to-market matched

reference portfolio, are on the upper 5% tail in the three-year event horizon. Our

CCAR-T and SHARPE-T are typically, however, better specified than BHAR tests.

The results of BHAR-T and BHAR-TSA are consistent with those reported in Lyon,

Barber, and Tsai [26, Sec. B.1.].

5.2.3 Book-to-market ratio

To asses the impact of book-to-market based sampling on the test statistics, we

draw separately from the smallest and largest book-to-market deciles 1, 000 sam-

ples of 200 events. The book-to-market deciles are formed in terms of the NYSE

stocks with AMEX and NASDAQ firms placed into appropriate deciles. The

book-to-market values of are defined according to the December of previous year

with market value on the last day of the month.

[Table 10]
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Table 10 reports the empirical sizes from the simulations. In the high book-to-

market samples CHAR-T and SHARPE-T reject generally statistically at the nominal

5% rate in the one year and three year horizons. In the five year window all tests

over-reject in the lower tail and two-tailed tests with the size/book-to-market

reference portfolio. Reference stock abnormal returns produce generally reason-

ably well specified results in all tests. In the low book-to-market samples BHAR-T

rejection is correctly specified with the reference stock abnormal, while CCAR-T

and SHARPE-T over-reject to some extend on the lower tail in the three-year hori-

zon. Reference portfolio based abnormal returns yield reasonably close rejection

rates only in the one-year horizon with CCAR-T and SHARPE-T. BHAR-T over-rejects

on the lower tail and under-rejects on the upper tail in all event horizons with

reference portfolio abnormal returns.

The general conclusion is that the size/book-to-market based reference portfo-

lios do not fully reflect the return characteristics when the population of firms is

restricted to these extreme book-to-market size deciles. Thus, if in practical ap-

plications it is known that the sample is biased specially to small book-to-market

firms the reference portfolio should also be constructed in terms of these firms.

The lowest decile is populated more heavily with NASDAQ stocks (NASDAQ 67%,

Amex 9%, and NYSE 24% in our samples) while in the highest book-to-market

decile the percentage are NASDAQ (55%), Amex (21%), and NYSE (24%). Our

next experiment demonstrates more concretely the importance of matching the

reference portfolio in line with the population characteristics from which the stocks

are sampled.
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5.2.4 Pre-event return performance

Recent stock price appreciation is considered to be an important factor to motivate

issue equity (Graham and Harvey [14], Campello and Graham [10]). Similarly

share repurchases are generally preceded by a period of low stock returns (Lyon,

Barber and Tsai [26]). Equity and debt issuers tend to underperform matching

non-issuers in the post-issue years (Lyanders, Sun, and Zhang [25]).

To asses the impact of recent price performance on the test statistics, we follow

the strategy implemented in Lyon, Barber, and Tsai [26, Sec B.3.] and calculate

the preceding six-month buy-and-hold return for all firms in each month from July

1973 through December 2009 and rank all firms in deciles on the basis of their six-

month performance preceding the ranking month. We draw separately 1, 000 sets

of 200 firms sampled with replacement from the lowest and highest return deciles.

In computing abnormal returns, we use in addition to the size/book-to-market

reference portfolios, an equally weighted reference portfolio including all stocks in

the highest decile and a similarly constructed portfolio of the lowest decile stocks.

In the reference stock method the stock which has the closest book-to-market

value with the sample stock in the decile is used as the reference.

[Table 11]

Results are reported in Table 11. The table clearly shows the importance of ac-

counting the pre-event characteristics of the subset from which the stocks are

sampled. The portfolio method which matches the size and book-to-market char-

acteristics with the sample stock yields badly badly biased rejection rates in

particular in the one-year event in all test statistics. The bias is due to the
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miss-match of the average stock returns and reference portfolio returns. The av-

erage buy-and-hold returns over the simulations are in the 1-year, 3-year, and

5-year windows for the high (low) deciles are 33.9% (5.0%), 78.0% (59.4%), and

141.3% (130.0%), while the corresponding average buy-and-hold reference port-

folio returns are 17.7% (15.6%), 64.8% (64.8%), and 130.0% (130.9%). Thus,

in particular in the 1-year window the average stock returns differ substantially

from the benchmark and hence point out the need of finding better matching in

constructing a benchmark.

Using the decile based reference largely solves the problem in particular with

CCAR-T and SHARPE-T. In terms of these statistics, the corresponding decile based

reference portfolio and reference stock in all horizons rejection rates that statis-

tically coincide with the nominal rate (0.05) in both tails as well as in two-tailed

testing. Of these the reference portfolio is far more preferable because of the ma-

terial power gains as demonstrated in of the three-year event window in Figure 4.

Panels A and C plot the powers for BHAR-T, CCAR-T, and SHARPE-T with pre-event

decile matched portfolios and Panels B and D the corresponding powers with pre-

event size decile matched firms. The figure also demonstrates the superior power

of SHARPE-T over CCAR-T and in particular over BHAR-T and BHAR-TSA which ever

benchmark is used.

[Figure 4]

5.2.5 Industry clustering

To be included.
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5.3 Calendar time portfolio method

Loughran and Ritter [23], Brav and Gombers [5], and Boehme and Sorescu [2],

among others, employ the Fama-French factor-type models to analyze long-horizon

event effects. The performance and properties of Fama-French three-factor based

calendar time is widely investigated in Mitchell and Stafford [28]. A major problem

with the approach is the ”bad model” problem discussed in Fama [12] which stems

from the fact the the specified factors do not capture all the common return

characteristics of stocks.

In order to alleviate this problem Boehme and Sorecsu [2] (see also Mitchell and

Stafford [28, Sec V] utilize a model they call an adjusted Fama-French model. In

this approach the difference of the test asset and its size/book-to-market matched

control stock is regressed on the Fama-French factors. Given that the reference

stock has similar characteristics as the test asset, this approach has the potential

to eliminate all unknown common factors from the resulting abnormal return. We

follow this practice and form calendar time portfolios

(Rtest −Rcontrol)p,t = αp + βp(Rm,t −Rf,t) + spSMBt + hpHMLt + ep,t, (60)

where (Rtest − Rcontrol)p,t is the monthly portfolio return (equally weighted or

value weighted) of the difference of the simple returns of the test asset and its

size/book-to-market matched control firm, Rm,t is the monthly simple return of

the value weighted market index, Rf,t is the monthly return of the three month

Treasury bills, SMB is the monthly Fama-French small-minus-big factor return, and

HML is the monthly Fama-French high-minus-low factor return. In month t the

portfolio (Rtest−Rcontrol)p,t includes all those stocks whose event period includes
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the month. Thus, the number of stocks, nt, can vary monthly from zero to the

total number of sampled stock. The month index t is running from the earliest

month to the latest month of the event periods of the stocks in the sample and

months with nt = 0 are discarded from the analysis.

The parameter αp in (60) is the abnormal return parameter. The corresponding

regression t-ratio gives the statistic for testing the abnormal return. We refer to

this statistic as CALENDAR-T, which is defined as

tcalendar =
α̂p
s(α̂p)

, (61)

where α̂p is an estimator of αp and s(α̂p) is the corresponding standard error of

α̂p.

Empirical rejection rates at the nominal 5% levels under different sample designs

discussed in Sections 5.1 and 5.2 are reported in Table 12. The results are based on

the 1, 000 samples of 200 event months according to the sample designs described

in Sub-sections 5.1.1 through 5.2.4. For each sample the calendar time portfolio

is abnormal returns according to model (60) are computed for equally weighted

and value weighted portfolio returns by ordinary least squares (OLS). The varying

number of stocks in different calendar months causes heteroscedasticity into the

residuals. The heteroscedasticity can be accounted by utilizing weighted least

squares (WLS). The results, however, proved to be qualitatively the same as

those of OLS. Accordingly we report only these results.

[Table 12]

The calendar time portfolio method is relatively well specified in all designs for the
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equally weighted as well as value weighted portfolios. The results are in Table 12.

In the case of the equally weighted portfolios reported in Panel A of the table, most

of the significantly deviating rejection rates are because of under-rejection, i.e.,

the empirical rejection rate is significantly lower that the nominal level. The most

sever under-rejection is in the two-tailed testing in the ”Low pre-event returns”

design for the 3 years holding period, in which the empirical rejection rate is

0.18, i.e., about one third of the nominal rate 0.05. In this regard the results

are consistent with those of Lyon, Barber, and Tsai [26, Table X], who report

only one-sided (over-rejection) binomial test significances in their table. However,

visual inspection of Panel A of Table X in Lyon, Barber, and Tsai [26] indicates a

similar tendency of under-rejection as our explicit testing shows. Compared with

our results, the biggest difference is in the ”Low book-to-market ratio” design, in

which Lyon, Barber, and Tsai report severe over-rejection in the lower tail ([26,

Panel A of Table X]), whereas our results do not indicate such symptom.

For the value weighted results, reported in Panel B of Table 12, most of the

significant deviations from the nominal levels are over-rejections, which in most

cases are not terribly bad. Only in the designs ”Small firms” and ”Low pre-event

returns” the over-rejections are severe, being at worst from two to five times the

nominal rate of 0.05.

Thus, in all the calendar time testing in terms of Fama-French factors regressed

on the return differences of a test stock and its size/book-to-market matched con-

trol firm stock return yields reasonably well specified test results. However, as

Figure 5 demonstrates, the calendar time method suffers from a very weak power

compared to the Sharpe-ratio based methods suggested in this paper. For exam-

ple an abnormal return of size 10% is detected by CALENDAR-T only by about 0.15

49



probability, while SAHRPE-T detects it with reference stock method with proba-

bility 0.45 and with reference stock method with probability of 0.75. Thus, the

calendar time approach turns out to be very weak in detecting abnormal return

behavior compared in particular to the Sharpe-ratio based tests.

[Figure 5]
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6 Conclusions

This paper proposes an innovative testing approach based on standardized Sharpe

ratios to test for abnormal returns in long-horizon (12-to-60 months) event effects.

Simulations with actual returns demonstrate that the suggested test statistics do

not have material size distortion and that the power of the statistics based on

Sharpe ratios are superior to the conventional t-tests popular in long-horizon event

studies. Also, the results show that event day clustering in random samples does

not distort the power or size of test statistics. Finally, the reference portfolio turns

out to be central in the definition of the abnormal return in order to keep the size of

the test under control. In terms of the size of the tests, the choice of size/book-to-

market matched reference stocks is often a good candidate, but unfortunately this

procedure leads to a material power loss in testing. The calendar time approach

is another event study popular methodology. It is recommended in particular due

to its implicit control of potential cross-sectional correlation in abnormal returns.

However, contrary to this common belief, we show that cross-correlation is very

rarely a problem in long-horizon event study testing. Because of its very weak

power, calendar time based testing is not recommended as a useful approach in

long-horizon event study testing.
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Table 4: Empirical rejection rates at the 5% level two-sided testing of differ-
ent magnitudes of abnormal returns defined with respect to size/book-to-market
matched portfolios in the RANDOM design with 1, 000 random portfolios of
n = 200 securities for annual (PANEL A), three-year (PANEL B), and five-year
(PANEL C) event windows.

Abn ret (%) BHAR-T BHAR-TCA CCAR-T SHARPE-T
Panel A: Annual (12 months) abnormal returns
−10 0.755 0.653 0.879 0.994
−6 0.439 0.363 0.431 0.788
−4 0.273 0.229 0.212 0.447
−2 0.158 0.132 0.098 0.166
±0 0.073 0.079 0.057 0.065
+2 0.059 0.095 0.099 0.144
+4 0.133 0.207 0.272 0.439
+6 0.313 0.445 0.497 0.738
+10 0.783 0.851 0.880 0.986

Panel B: Three-year (36 months) abnormal returns
−24 0.914 0.777 0.998 1.000
−12 0.607 0.474 0.679 0.907
−6 0.308 0.234 0.227 0.367
−3 0.189 0.135 0.096 0.137
±0 0.088 0.080 0.042 0.055
+3 0.043 0.059 0.076 0.095
+6 0.058 0.125 0.185 0.283
+12 0.300 0.473 0.581 0.831
+24 0.959 0.983 0.989 1.000

Panel C: Five-year (60 months) abnormal returns
−25 0.842 0.660 0.974 0.998
−15 0.555 0.431 0.644 0.856
−10 0.380 0.289 0.333 0.530
−5 0.222 0.161 0.123 0.177
±0 0.091 0.084 0.074 0.073
+5 0.059 0.112 0.161 0.196
+10 0.134 0.257 0.397 0.534
+15 0.337 0.507 0.702 0.849
+25 0.834 0.918 0.971 1.000

BHAR-T is Buy-and-hold abnormal return t-statistic defined in equation (8), BHAR-

TSA is the skewness adjusted BHAR-T statistic (Lyon, Barber, and Tsay [26]) defined

in equation (9), CCAR-T is the continuously compounded abnormal return t-statistic

defined in equation (23), and SHARPE-T is the Sharpe ratio based test statistic defined

in equation (30). The test statistics and their key properties are summarized in Table 1.

Data in the simulations utilizes actual monthly returns from CRSP data base from the

sample period from July, 1973 through December 2009.
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Table 5: Empirical rejection rates at the 5% level two-sided testing of different
magnitudes of abnormal returns defined with respect to market-wide portfolio in
the RANDOM design with 1, 000 random portfolios of n = 200 securities for
annual (PANEL A), three-year (PANEL B), and five-year (PANEL C) event win-
dows.

Abn ret (%) BHAR-T BHAR-TCA CCAR-T SHARPE-T
Panel A: Annual (12 months) abnormal returns
−10 0.769 0.655 0.787 0.982
−6 0.454 0.375 0.300 0.637
−4 0.285 0.235 0.130 0.309
−2 0.161 0.134 0.071 0.098
±0 0.078 0.079 0.063 0.075
+2 0.060 0.088 0.159 0.248
+4 0.106 0.183 0.348 0.531
+6 0.266 0.394 0.571 0.821
+10 0.751 0.826 0.896 0.991

Panel B: Three-year (36 months) abnormal returns
−24 0.910 0.742 0.995 1.000
−12 0.597 0.453 0.636 0.891
−6 0.314 0.222 0.208 0.370
−3 0.179 0.121 0.090 0.136
±0 0.094 0.073 0.045 0.042
+3 0.049 0.060 0.083 0.096
+6 0.056 0.126 0.175 0.254
+12 0.279 0.451 0.548 0.769
+24 0.958 0.985 0.981 1.000

Panel C: Five-year (60 months) abnormal returns
−25 0.835 0.600 0.965 1.000
−15 0.567 0.400 0.598 0.822
−10 0.390 0.274 0.315 0.478
−5 0.227 0.151 0.123 0.175
±0 0.097 0.081 0.066 0.061
+5 0.064 0.108 0.164 0.183
+10 0.129 0.255 0.385 0.509
+15 0.315 0.504 0.664 0.797
+25 0.826 0.913 0.961 0.998

BHAR-T is Buy-and-hold abnormal return t-statistic defined in equation (8), BHAR-

TSA is the skewness adjusted BHAR-T statistic (Lyon, Barber, and Tsay [26]) defined

in equation (9), CCAR-T is the continuously compounded abnormal return t-statistic

defined in equation (23), and SHARPE-T is the Sharpe ratio based test statistic defined

in equation (30). The test statistics and their key properties are summarized in Table 1.

Data in the simulations utilizes actual monthly returns from CRSP data base from the

sample period from July, 1973 through December 2009.
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Table 6: Empirical rejection rates at the 5% level two-sided testing of differ-
ent magnitudes of abnormal returns defined with respect to size/book-to-market
matched reference stocks in the RANDOM design with 1, 000 random portfolios of
n = 200 securities for annual (PANEL A), three-year (PANEL B), and five-year
(PANEL C) event windows.

Abn ret (%) BHAR-T BHAR-TCA CCAR-T SHARPE-T
Panel A: Annual (12 months) abnormal returns
−8 0.347 0.387 0.482 0.763
−6 0.219 0.261 0.298 0.528
−4 0.119 0.152 0.175 0.285
−2 0.067 0.095 0.092 0.117
±0 0.046 0.070 0.060 0.056
+2 0.055 0.085 0.059 0.082
+4 0.112 0.139 0.106 0.210
+6 0.181 0.214 0.207 0.406
+8 0.299 0.334 0.351 0.645

Panel B: Three-year (36 months) abnormal returns
−24 0.730 0.746 0.898 0.985
−12 0.281 0.328 0.359 0.581
−6 0.113 0.148 0.124 0.198
−3 0.069 0.103 0.081 0.096
±0 0.054 0.089 0.054 0.053
+3 0.060 0.102 0.072 0.080
+6 0.103 0.141 0.125 0.197
+12 0.252 0.312 0.346 0.559
+24 0.698 0.712 0.884 0.985

Panel C: Five-year (60 months) abnormal returns
−25 0.586 0.618 0.808 0.964
−15 0.280 0.334 0.421 0.621
−10 0.151 0.204 0.232 0.342
−5 0.075 0.122 0.085 0.137
±0 0.043 0.084 0.046 0.045
+5 0.073 0.116 0.090 0.105
+10 0.143 0.199 0.202 0.279
+15 0.241 0.302 0.373 0.515
+25 0.576 0.611 0.791 0.923

BHAR-T is Buy-and-hold abnormal return t-statistic defined in equation (8), BHAR-

TSA is the skewness adjusted BHAR-T statistic (Lyon, Barber, and Tsay [26]) defined

in equation (9), CCAR-T is the continuously compounded abnormal return t-statistic

defined in equation (23), and SHARPE-T is the Sharpe ratio based test statistic defined

in equation (30). The test statistics and their key properties are summarized in Table 1.

Data in the simulations utilizes actual monthly returns from CRSP data base from the

sample period from July, 1973 through December 2009.
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Figure 1: Empirical power functions at the 5% level in two-sided testing of abnormal
returns defined with respect to size/book-to-market matched reference portfolios, gen-
eral market portfolio, and size/book-to-market matched reference firm in the RANDOM
design with 1, 000 random portfolios of n = 200 stocks for annual (PANELS A, B, C),
three-year (PANELS D, E, F), and five-year (PANELS G, H, I) event windows.
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Panel F: Size/book−to−market 
 matched control firm (36 months)
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Panel G: Size/book−to−market 
 matched portfolio (60 months)
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Panel H: General market portfolio 
 (60 months)
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Panel I: Size/book−to−market 
 matched control firm (60 months)
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BHAR-T is Buy-and-hold abnormal return t-statistic defined in equation (8), BHAR-

TSA is the skewness adjusted BHAR-T statistic (Lyon, Barber, and Tsay [26]) defined

in equation (9), CCAR-T is the continuously compounded abnormal return t-statistic

defined in equation (23), and SHARPE-T is the Sharpe ratio based test statistic

defined in equation (30). The test statistics and their key properties are summarized

in Table 1. Data in the simulations utilizes actual monthly returns from CRSP data

base from July, 1973 through December 2009.
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Figure 2: Empirical power functions at the 5% level two-sided testing of abnormal
returns defined with respect to the size/book-to-market matched reference portfolios
general market portfolio, and size/book-to-market matched reference firm in the RAN-
DOM CLUSTER design with 1, 000 random portfolios of n = 200 stocks for annual
(PANELS A, B, C), three-year (PANELS D, E, F), and five-year (PANELS G, H, I)
event windows.
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Panel D: Size/book−to−market 
 matched portfolio (36 months)
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Panel E: General market portfolio 
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Panel F: Size/book−to−market 
 matched control firm (36 months)
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Panel G: Size/book−to−market 
 matched portfolio (60 months)
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Panel H: General market portfolio 
 (60 months)
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Panel I: Size/book−to−market 
 matched control firm (60 months)
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BHAR-T is Buy-and-hold abnormal return t-statistic defined in equation (8), BHAR-

TSA is the skewness adjusted BHAR-T statistic (Lyon, Barber, and Tsay [26]) defined

in equation (9), CCAR-T is the continuously compounded abnormal return t-statistic

defined in equation (23), and SHARPE-T is the Sharpe ratio based test statistic

defined in equation (30). The test statistics and their key properties are summarized

in Table 1. Data in the simulations utilizes actual monthly returns from CRSP data

base from July, 1973 through December 2009.
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Figure 3: Empirical power functions of BHAR-T, BHAR-TSA, CCAR-T, and
SHARPE-T for the RANDOM design (red line) and RANDOM CLUSTER design
(blue line) at the 5% level in two-sided testing of abnormal returns defined with
respect to the size/book-to-market matched portfolio with 1, 000 random portfolios
of n = 200 securities for three-year (36 months) event window.
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PANEL C: CCAR−T
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PANEL D: SHARPE−T
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BHAR-T is Buy-and-hold abnormal return t-statistic defined in equation (8), BHAR-

TSA is the skewness adjusted BHAR-T statistic (Lyon, Barber, and Tsay [26]) defined

in equation (9), CCAR-T is the continuously compounded abnormal return t-statistic

defined in equation (23), and SHARPE-T is the Sharpe ratio based test statistic

defined in equation (30). The test statistics and their key properties are summarized

in Table 1. Data in the simulations utilizes actual monthly returns from CRSP data

base from July, 1973 through December 2009.
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Figure 4: Empirical power functions of BHAR-T, BHAR-TSA, CCAR-T, and
SHARPE-T statistics in samples from high and low pre-event return stocks at the
5% level in two-sided testing of abnormal returns defined with respect to the decile
matched portfolios (Panels A and C) and with respect to decile and book-to-market
matched firm (Panels B and C). The plot a based on 1, 000 random portfolios of
n = 200 securities for three-year (36 months) event window.

Panel A: Pre−event matched portfolio 
 (high pre−event return decile)

Abnormal return (%)

P
ow

er

−25 −15 −5 5 15 25

0.
2

0.
4

0.
6

0.
8

1.
0

0.
05

BHAR−TSA
CCAR−T
SHARPE−T

Panel B: Pre−event matched reference stock 
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Panel C: Pre−event matched reference firm 
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Panel D: Pre−event matched reference stock 
 (low pre−event return decile)
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BHAR-T is Buy-and-hold abnormal return t-statistic defined in equation (8), BHAR-

TSA is the skewness adjusted BHAR-T statistic (Lyon, Barber, and Tsay [26]) defined

in equation (9), CCAR-T is the continuously compounded abnormal return t-statistic

defined in equation (23), and SHARPE-T is the Sharpe ratio based test statistic

defined in equation (30). The test statistics and their key properties are summarized

in Table 1. Data in the simulations utilizes actual monthly returns from CRSP data

base from July, 1973 through December 2009.
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Figure 5: Empirical power functions of SHARPE-T (reference portfolio),
SHARPE-T (reference stock), and CALENDAR-T statistics in random samples
based on 1, 000 random portfolios of n = 200 securities for three-years (36 months)
event window.
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SHARPE-T is the Sharpe ratio based test statistic defined in equation (30) of the

references portfolio abnormal return, SHARP-T Ref Stock is the SHARPE-T statistic of

testing the size/book-to-market reference stock based abnormal return [Section 4.1

(c)]. The CALENDAR-T statistic is defined in equation (61) and the SHARPE-T statistic

and its key properties are discussed in Section 3.4.2. Data in the simulations utilizes

actual monthly returns from CRSP data base from July, 1973 through December 2009.
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